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Abstract
This paper addresses issues surrounding deployment and tasking of a real-world collective of cost-
effective, small mobile robots. To escape the limitations of centralized control, this project distributes
control using an innovative, multi-modal communication architecture including acoustical chirping,
infrared, and radio frequency transmissions. This paper reports on the use of social potential fields –
attractive and repulsive fields emitted by each robot -- as a means to coordinate group behavior and
promote the emergence of swarm intelligence as seen in a colony of ants or swarm of bees. A suite of C2
tools, AgentTools, has been developed to enable an operator to inject high-level domain knowledge and
guidance into the behavior of the otherwise autonomous robots. The resulting system permits the user to
interact with functional groups, rather than issuing commands to each individual robot. Using the real-
world robot collective and C2 system, the Idaho National Engineering and Environmental Laboratory has
performed experiments to empirically analyze the benefits and limitations associated with the use of many
small-scale robots. Experimental results point to fundamental advantages of distributed systems and
indicate that our real-world implementation of social potential fields scales well to varying numbers of
robots and improves performance in terms of time and reliability.   

I.  INTRODUCTION

In the near future, it may be possible to produce and
deploy large numbers of inexpensive, disposable, meso-
scale robots.  Although limited in individual capability,
such robots deployed in large numbers would represent a
strong cumulative force as with a colony of ants or swarm
of bees. However, the problem of creating coordinated
social behavior from simple, reactive behavior sets is not
easily solved. One means that insect societies use to
impose order and structure onto the otherwise erratic
behavior of individuals is group formation behavior
where a spatial relationship is maintained implicitly
between adjacent entities as in a flock of birds, a school of
fish, or a swarm of gnats.1  Likewise, we have found that
social potential fields provide a means to control a variety
of emergent swarm effects including swarm size, swarm
density, swarm translation, and the propensity of the
swarm to explore new ground. 2, 3  Our work with a
collective of 12 small robots shows that social potential
fields, although wrought entirely through local
interactions and reactive behaviors, can provide a means

for coordination and control of a collective as it performs
searches in various environments. By modulating these
fields through online adaptation or in response to high-
level user commands, it is possible to spur dramatic
performance improvements in the behavior of the
collective.

From an operational perspective, the near-term goal
of our work is to develop a team of small disposable
robots to assist a human operator in the remote
characterization of hazardous or unknown environments.
Within this context, small scale distributed robots can
reduce cost, remove workers from the dangers of
radioactive, explosive, toxic and other hazardous
materials, and increase productivity. We predict that
multi-robot systems will one day be used across the
Department of Energy complex to map and characterize
buried waste and retired facilities; to perform routine
inspection of critical components; to perform
environmental monitoring and building surveillance and
to provide rapid-response capabilities in the event of a
hazardous spill or radiation leak. The work outlined in
this paper takes initial steps towards this vision.



II.  RESEARCH ISSUES

A. Previous Work

The goal of using autonomous robots to perform
remote characterizations is not unique.  Current robotic
systems used for this application tend to be highly
sophisticated, expensive platforms –  typically large to
mid-sized robots deployed as single units or in small
groups. Existing systems are domain-centric and often
require prior instrumentation and/or teams of engineers to
operate and service.  They are expensive to manufacture,
transport, and operate, and, consequently, are undesirable
for rapid response in remote characterization tasks where
the robots often cannot be recovered because of exposure
to hazards. One innovative approach to the remote
characterization problem was developed through a
partnership between Oak Ridge National Laboratory
(ORNL) and the Idaho National Engineering and
Environmental Laboratory (INEEL). This effort produced
MACS (Mobile Automated Characterization System) and
RACS (Reduce Access Characterization System).4  The
large robot, MACS, explores and characterizes the
building, deploying the smaller RACS robot into rooms
and areas where the larger robot has limited
mobility/access.

While the MACS and RACS team offers many
benefits over strategies that employ only one system, such
approaches do not exploit the benefits of fully distributed
systems:
•  Emergent Behavior – As in a colony of ants, intelligent,

complex behavior emerges from the interactions of
multiple robots each driven by simple behaviors.

•  High Fault Tolerance – By distributing the task
across a loosely coupled population of robots, the
collective can succeed even when particular robots
fail.

•  Redundancy – The behavior of each robot can be
validated / duplicated by its peers.

•  Cooperative Behavior – We can exploit synergistic
behavior impossible with only one to several robots.

•  Modulated Diversity – As in biological systems, an
appropriate level of diversity adds richness to the
capabilities of the collective and makes it more
robust to environmental changes.

•  Low Cost – Small scale robots can potentially be used
as a disposable resource

Swarm intelligence offers a means to achieve these
benefits. The expression ‘swarm intelligence’ was first
used by Beni to describe systems where many simple

agents generate patterns and self-organize through nearest
neighbor interactions.5 More recently, Bonabeau, Dorigo
and Theraulaz have supplied a useful definition of the
term as “any attempt to design algorithms or distributed
problem-solving devices inspired by the collective
behavior of social insect colonies and other animal
societies.”6 Borrowing on previous work by Tsetlin we
can identify four main characteristics of swarm behavior
including randomness, decentralization, indirect
interaction, and self-organization.7 Throughout this paper,
we discuss how each of these ingredients impact
performance of our robot collective.

B. A Basis in Biology

Insects do not rely on sophisticated internal states,
directed communication, global position information, or
range information – the hallmarks of most state-of-the-art
robotics efforts.1 Likewise, our approach has been to
abandon tools such as wheel encoders, laser range finders,
sonar, vision, GPS, compass, etc., which have proven
useful for mid-sized to large robots and embrace an
entirely different paradigm that relies on simple, local,
interactions displaced onto the environment rather than
internal computation. For our robots, these interactions
take place through entomologically inspired modes of
perception and communication including chirping,
detection of other robots’ shadows, antennae-like touch
sensing and moisture detection. Within this embodied
approach, the robots learn to respond appropriately to
fluctuations in sound and light; in fact, obstacle avoidance
and a variety of social behaviors including searching, spill
convergence, and perimeter formation are all dependent
on the robot’s ability to both recognize and instigate these
fluctuations.

Insect behavior is robust to environmental changes
because insects exhibit a tight coupling between
perception and action. Very little processing occurs from
when a cockroach perceives a sudden change in lighting
and when it moves. Likewise, our robots do not make
deliberative, high-level decisions about the task, but react
to their environment using fast, responsive behaviors that
are domain independent and robust because they do not
rely on sophisticated internal processing. We believe our
approach is especially useful for rapid response type
missions where little is known about the environment
and/or there is insufficient time to custom tailor a robotic
solution.

Figure 1 below shows part of the robot collective
investigating the floor of a DOE lab facility.



Fig. 1: Robots swarm as they explore a DOE building.

III. IMPLEMENTATION

A. Robot Hardware

Fig. 2: Instrumented GrowBot

The platform chosen for this research project is based
on the basic stamp by Parallax. Our current research
platform has two of these processors: one for
communications and the other for navigation. In addition,
the robot is equipped with a spill detection sensor, two
bump sensors, two whisker-like light sensors, four IR
sensors for obstacle avoidance, a ring of IR for local
communications, a piezoelectric speaker and two
directional hearing aid microphones, one in the front and
one in the rear. Also, the robot collective includes
“sergeant” robots that are specialized for communication.
Radio frequency transmission capabilities allow the
sergeants to receive commands from a human operator.
The sergeants then use IR transmission to disseminate
these commands to the “privates.” To facilitate user

interaction with large numbers of robots, privates can be
assigned to swarm around a particular sergeant as it
moves to accomplish search and detection tasks.

B. Social Potential Fields

The INEEL has implemented social potential fields
on a collection of 12 robots using a combination of IR
obstacle avoidance, light sensing and audible chirping.
Through these behaviors, each robot exerts both an
attractive and repulsive force field. The attractive field,
based primarily on sound, can either discourage robots
from moving too far away (an essential aspect of stable
swarming behavior) or can actively pull other robots
towards itself through a “come hither” chirp emitted by a
robot that has found an area of interest, such as a spill.
The repulsive field discourages robots from coming too
close and is based on sound (robots avoid chirps above a
certain volume) and the various obstacle avoidance
sensors, which include infrared, light sensing, and bump
sensing.

Online Learning

The elusive goal was to develop behavior that could
implicitly (i.e. without a map, internal representation,
directed communication, or centralized control):
•  Minimize redundancy and interference

•  Maintain a beneficial level of social interaction

•  Adjust each robot’s willingness to explore

•  Automatically adapt individual robots to different
environments and varying numbers of robots

To accomplish these aims, we developed a form of online
adaptation that provides the swarm with a means to
automatically regulate itself. Positive and negative
feedback is supplied to each robot by an internal critic,
invoked at regular time intervals in order to continually
adjust sensitivity to light and sound fluctuations. If the
robot is too sensitive to these fluctuations, it appears
“timid” and will fail to cover new ground. On the other
hand, if the robot becomes unresponsive to such
fluctuations, it will not effectively avoid collisions with
obstacles other robots. Perception of real world light
intensity and sound fluctuations offers a perfect means to
modulate levels of randomness and diversity – key
components of swarm behavior – into the robots’
behavior. 5,6  By adjusting the level of randomness, the
online learning system can modulate certain emergent
properties of the swarm such as swarm density, swarm
translation, and swarm convergence. It also adapts the
swarm to new environments and promotes full coverage
even in obstacle rich environments.



C. Command and Control

Although self-regulation offers dividends in terms of
robustness, the resulting diversity is not easy to predict or
precisely control. Imagine trying to develop command
and control for a colony of ants or a swarm of gnats.
Unlike the insect world, the robotic system must interact
cooperatively with human operators. Ideally, the user
should not be required to task individuals, but should be
able to abstract group command and control functions. To
support this need for high-level tasking, INEEL has
developed AgentCDR, a hierarchical command and
control tool that includes human-centric visualization
tools, iconographic representation of robots, GUI
controlled group assignment, operation planning tools,
and system status alerts for communication failure.
Furthermore, the privates are not dependent on the
sergeants or on the human operator for continuous
communication and can function autonomously in the
absence of sergeant or user input. This flexibility supports
mixed-initiative control and allows AgentCDR to balance
the needs and limitations of the robots, C2 structure, and
the human operator(s).

D. Parent Robot

One of the issues in utilizing small robots is control
of their initial placement within the environment. To
address this deployment problem, the INEEL has
developed a Parent robot – a much larger and more
capable robot -- that can deploy the robots by emitting a
“follow me” chirp. In turn the smaller robots utilize a
combination of an IR-based follow behavior and a “chirp
follow” behavior to track the Parent. The Parent robot

deploys the robots into a building, and then assumes a
monitoring mode. Using an autonomous tracking
behavior, the Parent provides visual feedback on a
particular group by following a certain distance behind a
specified sergeant. In terms of the operational scenario,
the ability to autonomously provide visual feedback is a
crucial form of support for the operator using AgentCDR.
In a recent demonstration of the system in a DOE
building, the ability of the Parent to provide feedback on
swarm behavior allowed the user to accomplish difficult
tasks such as guiding a group of robots through a door
and into a new area of the building. Rather than adding
complexity to the task, the Parent robot alleviates
cognitive load for the operator and augmented overall
swarm utility.

IV. EXPERIMENT

Before we could fully understand the effects of social
potential fields, we needed some way to empirically
measure the performance of our swarm as it accomplished
search and perimeter formation tasks. Our goal was to
show that the social interactions wrought through our
implementation of social potential fields could produce
desirable emergent effects that helped the robots
accomplish their task. We needed some means to quantify
the performance benefits achieved though emergent social
effects and chose to do so in terms of a coverage
efficiency experiment. The experiment focused on the
autonomous searching behavior of the privates and did
not examine command and control issues related to
infusing the system with human knowledge and guidance.

Fig. 4: The view from the Parent robot. The
operator uses this feedback to guide the sergeant
through the door as the privates swarm behind it.

Fig. 3: The Parent robot deploys the smaller robots
through a doorway into a large DOE facility.



A. Methods

        The primary challenge was how to acquire empirical,
objective data on the behavior of the robots. To meet this
need, we constructed an environment consisting of an
eight by eight foot walled enclosure with a floor covering
consisting of large sheets of white-board.  Each robot was
instrumented with a Velcro sponge pad, which allowed us
to securely attach a dry erase marker to the rear of the
robot. Each robot was fitted with a different color marker
to differentiate its path from the others. The marker
provided an effective means to capture “ground-truth” on
the movements of each robot and the cumulative effect on
the resulting area coverage. Figure 5 illustrates the test
bed environment.

Fig. 5: A single robot explores the test bed environment

To complete the coverage task, the robot(s) were
required to fully explore the floor of the test bed described
above. We considered several means of ascertaining
coverage and decided that full-coverage would be defined
as “no unmarked space remaining into which a robot
could fit lengthwise.” Throughout the experiment, four
rectangular, cardboard obstacles of varying sizes
remained fixed in position within the testbed.

We ran five trials with one, two, three, four, six and
nine robots. For each trial the robot(s) were placed in the
same corner and were all started within a few seconds of
each other. For each trial, we recorded the total time
required to achieve full coverage and then wiped the test-
bed clean.

B. Results

TABLE I
TIME REQUIRED FOR TASK COMPLETION (MIN)

Robots Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
1 77 53 110 113 170
2 33.78 56 50.93 42.33 32.67
3 21.93 24.63 18.47 14.93 18.33
4 14.9 12.63 10.25 14.76 19.0
6 6.53 6.46 6.78 7.58 13.20
9 11.75 6.36 8.02 5.47 7.63

Table 1 provides the time required for each run.

Figure 6 shows that the average time required to
achieve full coverage decreases drastically as the number
of robots increases.
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Fig. 6: Average time for complete coverage

If we define performance as the reciprocal of time
required, we can present the data in terms of overall
performance / the number of robots. Figure 7 shows the
system performance for each trial divided by the number
of robots used. This “performance per robot,” metric is
commonly used to discuss how the synergistic effects of
cooperation changes with varying numbers of robots.8



Performance Per Robot
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robots.

C. Discussion

While a 64 sq. ft. environment may seem small in
comparison to many operational environments, complete
coverage proved to be a stiff requirement. The time
required for a single robot to achieve full coverage varied
drastically from trial to trial. Indeed, the distribution range
between trials may be, in and of itself, a significant result.
Besides reducing the overall time required to search an
area, the use of multiple robots renders overall task
performance more reliable. Figure 8 shows that the use of
multiple robot improves reliability of the system.
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Fig. 8:  Standard deviation for each set of trials

Our data show that the performance per robot
increases as we add more robots, indicating that there is a
“synergistic” effect emerging. This indicates that we are
indeed benefiting from the social effects of multiple robot

interaction and that these effects grow as we add more
robots. However, our results also indicate that the benefit
to adding additional robots extends only to a point after
which the synergistic effects begin to be offset by the
detrimental effects of increasing interference. Figure 7
shows that the performance per robot augments through
six robots but then begins to diminish. By nine robots, the
performance per robot has drastically decreased.

One aspect of the experimental design, which had a
significant impact on the results, was our decision to
measure the time needed for complete coverage as
opposed to measuring percent of coverage after a fixed
time had elapsed. At the beginning of a coverage task,
much new ground is being covered, while by the end, the
robot(s) are covering very little new ground. Thus, the
difference between 1 and n robots appears most stark
when we wait for that last little bit of ground to be
covered. With 1 robot, the last remaining small area could
take as much time to cover as the whole rest of the
environment. With multiple robots this effect is greatly
mitigated.

These results suggest that use of multiple robots can
be a great advantage for search and detection tasks.
However, before we can draw definitive conclusions
regarding these speculations, it is necessary to reproduce
the experiments with larger numbers of robots in different
environments. Reproducing this experiment will allow us
to ascertain which results generalize across environments
and which are a function of the specific study reported
here.

V.  CONCLUSION

In a variety of environments, the INEEL has
effectively demonstrated that an operator can use the
multi-robot system, including the Parent robot, Sergeants
and Privates, to search through multiple rooms and
converge upon a mock spill. At the 2001 American
Association for Artificial Intelligence (AAAI) Conference
in Seattle, WA, the INEEL demonstrated the ability of a
team of robots to autonomously locate and form a
perimeter around a water spill within an Urban Search
and Rescue test bed designed and built by the National
Institute of Standards and Technology (NIST).9,10  After
release, the robots began to disperse using their social
potential fields to implicitly divide the environment. Once
one robot found the spill and began to emit an audible
signal, congregation and perimeter formation occurred
quickly as the other robots were drawn to the “come
hither” chirp. 11 Figure 9 below shows the result of a
similar demonstration performed within a large, cluttered
building at the INEEL.



In the future, the INEEL will investigate how to
transition these capabilities towards specific Department
of Energy applications. A small radiation sensor has
recently been interfaced to the Privates, which will allow
them to map radiation gradients and converge on the
source. In addition, work is underway to move the
processors, sensors, communication and existing
behaviors onto a more capable platform, based on an
inexpensive, off-the-shelf toy monster truck chassis.
These new robots will be fast (up to 40mph), rugged and
capable of handling rough terrain. Our plan is to deploy a
team of 100 robots within the next 18 months.
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